skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Garcia, Catherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Biogenic particles originating in the ocean’s well-lit, shallow layer help regulate Earth's climate by absorbing carbon dioxide from the atmosphere and subsequently sinking to the ocean’s depths. Subtropical gyres are the largest ocean habitats on Earth and are characterized by year-round high light, warm temperatures, and low supply of nutrients. However, even in persistently these low-nutrient regions, conditions vary on multiple temporal and spatial scales, making low-frequency observations—even monthly—difficult to interpret. 
    more » « less
  2. Abstract Oceanic nutrient cycles are coupled, yet carbon-nitrogen-phosphorus (C:N:P) stoichiometry in marine ecosystems is variable through space and time, with no clear consensus on the controls on variability. Here, we analyze hydrographic, plankton genomic diversity, and particulate organic matter data from 1970 stations sampled during a global ocean observation program (Bio-GO-SHIP) to investigate the biogeography of surface ocean particulate organic matter stoichiometry. We find latitudinal variability in C:N:P stoichiometry, with surface temperature and macronutrient availability as strong predictors of stoichiometry at high latitudes. Genomic observations indicated community nutrient stress and suggested that nutrient supply rate and nitrogen-versus-phosphorus stress are predictive of hemispheric and regional variations in stoichiometry. Our data-derived statistical model suggests that C:P and N:P ratios will increase at high latitudes in the future, however, changes at low latitudes are uncertain. Our findings suggest systematic regulation of elemental stoichiometry among ocean ecosystems, but that future changes remain highly uncertain. 
    more » « less
  3. Abstract Concentrations and elemental stoichiometry of suspended particulate organic carbon, nitrogen, phosphorus, and oxygen demand for respiration (C:N:P:−O 2 ) play a vital role in characterizing and quantifying marine elemental cycles. Here, we present Version 2 of the Global Ocean Particulate Organic Phosphorus, Carbon, Oxygen for Respiration, and Nitrogen (GO-POPCORN) dataset. Version 1 is a previously published dataset of particulate organic matter from 70 different studies between 1971 and 2010, while Version 2 is comprised of data collected from recent cruises between 2011 and 2020. The combined GO-POPCORN dataset contains 2673 paired surface POC/N/P measurements from 70°S to 73°N across all major ocean basins at high spatial resolution. Version 2 also includes 965 measurements of oxygen demand for organic carbon respiration. This new dataset can help validate and calibrate the next generation of global ocean biogeochemical models with flexible elemental stoichiometry. We expect that incorporating variable C:N:P:-O 2 into models will help improve our estimates of key ocean biogeochemical fluxes such as carbon export, nitrogen fixation, and organic matter remineralization. 
    more » « less
  4. Linking ‘omics measurements with biogeochemical cycles is a widespread challenge in microbial community ecology. Here, we propose applying genomic adaptation as ‘biosensors’ for microbial investments to overcome nutrient stress. We then integrate this genomic information with a trait-based model to predict regional shifts in the elemental composition of marine plankton communities. We evaluated this approach using metagenomic and particulate organic matter samples from the Atlantic, Indian and Pacific Oceans. We find that our genome-based trait model significantly improves our prediction of particulate C : P (carbon : phosphorus) across ocean regions. Furthermore, we detect previously unrecognized ocean areas of iron, nitrogen and phosphorus stress. In many ecosystems, it can be very challenging to quantify microbial stress. Thus, a carefully calibrated genomic approach could become a widespread tool for understanding microbial responses to environmental changes and the biogeochemical outcomes. This article is part of the theme issue ‘Conceptual challenges in microbial community ecology’. 
    more » « less
  5. Climate-driven depletion of ocean oxygen strongly impacts the global cycles of carbon and nutrients as well as the survival of many animal species. One of the main uncertainties in predicting changes to marine oxygen levels is the regulation of the biological respiration demand associated with the biological pump. Derived from the Redfield ratio, the molar ratio of oxygen to organic carbon consumed during respiration (i.e., the respiration quotient, r O 2 : C ) is consistently assumed constant but rarely, if ever, measured. Using a prognostic Earth system model, we show that a 0.1 increase in the respiration quotient from 1.0 leads to a 2.3% decline in global oxygen, a large expansion of low-oxygen zones, additional water column denitrification of 38 Tg N/y, and the loss of fixed nitrogen and carbon production in the ocean. We then present direct chemical measurements of r O 2 : C using a Pacific Ocean meridional transect crossing all major surface biome types. The observed r O 2 : C has a positive correlation with temperature, and regional mean values differ significantly from Redfield proportions. Finally, an independent global inverse model analysis constrained with nutrients, oxygen, and carbon concentrations supports a positive temperature dependence of r O 2 : C in exported organic matter. We provide evidence against the common assumption of a static biological link between the respiration of organic carbon and the consumption of oxygen. Furthermore, the model simulations suggest that a changing respiration quotient will impact multiple biogeochemical cycles and that future warming can lead to more intense deoxygenation than previously anticipated. 
    more » « less
  6. Abstract Detailed descriptions of microbial communities have lagged far behind physical and chemical measurements in the marine environment. Here, we present 971 globally distributed surface ocean metagenomes collected at high spatio-temporal resolution. Our low-cost metagenomic sequencing protocol produced 3.65 terabases of data, where the median number of base pairs per sample was 3.41 billion. The median distance between sampling stations was 26 km. The metagenomic libraries described here were collected as a part of a biological initiative for the Global Ocean Ship-based Hydrographic Investigations Program, or “Bio-GO-SHIP.” One of the primary aims of GO-SHIP is to produce high spatial and vertical resolution measurements of key state variables to directly quantify climate change impacts on ocean environments. By similarly collecting marine metagenomes at high spatiotemporal resolution, we expect that this dataset will help answer questions about the link between microbial communities and biogeochemical fluxes in a changing ocean. 
    more » « less
  7. Abstract In this study, we combined “reciprocal transplant experiments,” cell‐sorting, and metagenomics to understand how phytoplankton adapt to differences in phosphate availability and the implications for nutrient uptake rates. Reciprocal transplant experiments were conducted on six stations ranging from cold, nutrient‐rich water in the Labrador Sea to warm, extremely P‐deplete water in the Sargasso Sea. In most cases, the direct impact of environmental conditions and likely P availability was the strongest control on phosphate uptake. However, especially the transplant experiments between the northern and southern stations revealed that there are situations where changes in community composition and functional genes have an important effect on uptake rates. Phytoplankton lineages responded uniquely to changing environmental conditions. The picoeukaryotic phytoplankton P uptake response was strongly regulated by the phosphate concentration, whereas the effect of community composition was larger forProchlorococcusandSynechococcus. In support, we found a tight negative relationship between ambient phosphate concentration and the frequency of P acquisition genes in bothProchlorococcusandSynechococcus, and such differences in genome content could be linked to lineage‐specific shifts in uptake rates. Linking genes with ocean biogeochemistry is a major scientific and technical challenge and most studies rely on correlations between genotypes and environmental conditions. However, our study demonstrates how reciprocal transplant experiments are a possible tool for understanding the relative role of environmental condition vs. plankton diversity in regulating important open ocean ecosystem processes. 
    more » « less
  8. Abstract A past global synthesis of marine particulate organic matter (POM) suggested latitudinal variation in the ratio of surface carbon (C): nitrogen (N): phosphorus (P). However, this synthesis relied on compiled datasets that may have biased the observed pattern. To demonstrate latitudinal shifts in surface C:N:P, we combined hydrographic and POM observations from 28°N to 69°S in the eastern Pacific Ocean (GO‐SHIP line P18). Both POM concentrations and ratios displayed distinct biome‐associated changes. Surface POM concentrations were relatively low in the North Pacific subtropical gyre, increased through the Equatorial Pacific, were lowest in the South Pacific subtropical gyre, and increased through the Southern Ocean. Stoichiometric elemental ratios were systematically above Redfield proportions in warmer regions. However, C:P and N:P gradually decreased across the Southern Ocean despite an abundance of macro‐nutrients. Here, a size‐fraction analysis of POM linked increases in the proportion of large plankton to declining ratios. Subsurface N* values support the hypothesis that accumulated remineralization products of low C:P and N:P exported POM helps maintain the Redfield Ratio of deep nutrients. We finally evaluated stoichiometric models against observations to assess predictive accuracy. We attributed the failure of all models to their inability to capture shifts in the specific nature of nutrient limitation. Our results point to more complex linkages between multinutrient limitation and cellular resource allocation than currently parameterized in models. These results suggest a greater importance of understanding the interaction between the type of nutrient limitation and plankton diversity for predicting the global variation in surface C:N:P. 
    more » « less
  9. Nutrient supply regulates the activity of phytoplankton, but the global biogeography of nutrient limitation and co-limitation is poorly understood.Prochlorococcusadapt to local environments by gene gains and losses, and we used genomic changes as an indicator of adaptation to nutrient stress. We collected metagenomes from all major ocean regions as part of the Global Ocean Ship-based Hydrographic Investigations Program (Bio-GO-SHIP) and quantified shifts in genes involved in nitrogen, phosphorus, and iron assimilation. We found regional transitions in stress type and severity as well as widespread co-stress.Prochlorococcusstress genes, bottle experiments, and Earth system model predictions were correlated. We propose that the biogeography of multinutrient stress is stoichiometrically linked by controls on nitrogen fixation. Our omics-based description of phytoplankton resource use provides a nuanced and highly resolved description of nutrient stress in the global ocean. 
    more » « less